Intrinsic vegetation memory as a proxy of engineering resilience may be an oversimplification.

PRESENTER: Erik Kusch

VARYING RELATIONSHIPS BETWEEN VEGETATION MEMORY AND CLIMATE VARIABILITY IN ACROSS GLOBAL DRYLANDS

Erik Kusch¹, Richard Davy³, Roberto Salguero-Gómez⁴, Alistair Seddon²

¹Aarhus University^{, 2}University of Bergen, ³Nansen Environmental and Remote Sensing Center, ⁴University of Oxford

BACKGROUND

- Vegetation memory determines how plants react to environmental changes
- Especially strong across dryland regions (e.g. due to water limitations)
- Compartmentalized:
 - **Intrinsic (**"How vegetation influences itself over time")

 \rightarrow Usually treated as an inverse proxy of recovery rates

• **Extrinsic (**"How the environment influences vegetation over time")

→ Usually understood as an inverse proxy of ecosystem

TAKE-HOME MESSAGES

- **1.** Assuming **intrinsic vegetation memory as a** direct **proxy of recovery rates may be flawed.**
 - . Global generalisations of vegetation response to soil moisture aspects are not possible (at this point).
- . Novel climate reanalysis products offer more informative climate parameters than the previously used.

RESULTS

-0.24

-0.20

-0.16

6

NDVI[t-1] (Intrinsic Memory)

- resistance
- **Characterized through:**
- **Strength (**"How strong does the system react to an anomaly?")
- **Sign (***"Does a positive anomaly benefit the system?"***)**
- **Length (***"How long does the system react to an anomaly?"***)**
- **Source (***"Which kind of anomaly does the system react to?"***)**

Extrinsic Vegetation Memory:

- Memory Length [Months]
- Memory Strength and Sign
- Memory Source
- Intrinsic Vegetation Memory: Memory Length at 1 month Memory Strength and Sign - Autoregressive Memory Source t-1

RESEARCH QUESTIONS

- 1. How can we distinguish intrinsic and extrinsic vegetation memory?
- 2. Can the use of novel climate products enhance our understanding of vegetation memory when compared to legacy products?
- 3. How well can we establish causal links between measures of plant

Air Temperature (Inverse Resistance)

1. It is difficult to distinguish intrinsic and extrinsic vegetation memory.

Relative Importance of Vegetation Responses

function or vegetation life history traits and vegetation memory?

METHODS

- Data sets:
 - **AVHRR GIMMS NDVI (**9x9km, 1982 2015, Monthly**)**
 - **ERA5 (**30x30km, 1950 TODAY, Hourly**)**
 - Air Temperature (implemented as instantaneous effect) Tair January 1981 Tair January 1981

Introducing: R package **KrigR** which handles: (1) Downloading & Processing Era5(-Land)/UERRA Data to user specifica (2) Downloading & Processing USGS GMTED 2010 Data as covariates in (3) Kriging spatial data using multiple cores for faster computation (3) Kriging spatial data using multiple cores for faster computation → Find the R Package on Git **2.** Vegetation memory processes differ greatly between regions.

3. Vegetation anomalies explained previously through intrinsic memory can be understood through soil moisture information.

10

