KrigR – CLIMATE DATA FOR YOUR SPATIAL STUDY

Erik Kusch, PhD Student Department of Biology Section for Ecoinformatics & Biodiversity Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) Arhus University **Richard Davy**, Senior Researcher Climate Dynamics and Prediction Nansen Environmental and Remote Sensing Center

microclimatic processes [...] affect broad-scale ecological processes - LEMBRECHTS & LENOIR, 2019

WorldClim Precipitation Climatology

Data Min = 0.0, Max = 881.4

→ Are we really using the best data available?

CLIMATE DATA - WHAT WE HAVE

Gridded Observations:

- Single-location measurements
- Aggregated and interpolated to fit grid

Shortcomings:

3

WorldClim temperature station data

Examples of datasets for temperature¹ and precipitation²

Name	Spatial resolution	Temporal resolution	Period covered
<u>CRUTv4</u> ¹	5° x 5°	Monthly	1850 - present
<u>GHCNv3</u> ^{1,2}	5° x 5°	Monthly	1880 - 2016
NOAA ¹	5° x 5°	Monthly	1880 - present
<u>GISTEMP</u> ¹	2° x 2°	Monthly	1880 - present
GHCN_CAMS ¹	0.5° x 0.5°	Monthly	1948 - present
UDelaware ^{1,2}	0.5° x 0.5°	Monthly	1900 - 2017
WorldClim2 ^{1,2,*}	0.042° x 0.042°	Monthly	1960 - 2018
<u>CPC Global^{1,2}</u>	0.5° x 0.5°	Daily	1979 - 2010
NOAA_land ²	0.5° x 0.5°	Monthly	1948 - present
<u>GPCP</u> ²	2.5° x 2.5°	Monthly	1979 - present
<u>GPCC</u> ²	0.5° x 0.5°	Monthly	1891 - present

CLIMATE DATA - WHAT IS OUT THERE

Climate Reanalyses:

- Synthesis of models and observations
- Product of choice for climate scientists
 doing process studies

Improvements:

- All climate parameters are available from a single product
- Dynamically consistent
- No spatial or temporal gaps
- Close match to a multitude of observations
- Massive advancement in temporal resolution

Examples of global climate reanalyses

Name	Spatial resolution	Observations assimilated	Temporal resolution	Period covered
<u>ERA5-</u> Land	0.1° x 0.1°		Hourly & monthly	1950* – present
ERA5	0.28° x 0.28°			
<u>JRA55</u>	1.25° x 1.25°	Ground-	6 hourly & daily	1958 – 2012
<u>NCEP</u>	2.5° x 2.5°	Satellite-born		1979 - presemt
MERRA-2	0.5° x 0.5°		Hourly & 3 hourly & 6 hourly	1980 - present
ERA-20C	0.25° x 0.25°	Surface pressure	3 hourly & 6 hourly	1900 - 2010

 * currently, ERA5 and ERA5-Land data is available going back to ${\sim}1980$

 \rightarrow Higher-resolution climate reanalyses are available for some regions

CLIMATE DATA – WHAT'S STOPPING US

Download specifications:

- Very complicated
- Not R-based

5

• No processing of data

Spatial resolution:

- Too coarse for biological use:
 - Era5: ~30km x 30km
 - Era5-Land: ~9km x 9km
- e.g. WorldClim delivers 1km x 1km

\rightarrow KrigR solves these issues!

ERA5-Land hourly data from 1981 to present	Geographical area 💿	
Overview Download data Documentation	O Whole available region	
	With this option selected the entire available area will be provided	

ERIK KUSCH

KrigR - OBTAINING THE DATA

Download Prerequisits

CDS account & API key (generated <u>here</u>)

ecmwfr package:

- Very unintuitive download specification
- No processing of data

KrigR package:

- Wrapper functions for ecmwfr package
- More intuitive specification
- Masking according to shapefiles
- Aggregation of hourly/monthly data to desired temporal resolutions

KrigR - DOWNSCALING THE DATA

Kriging

- Geostatistical downscaling method
- Covariates at training & target resolution

automap package:

- Kriging functionality in R

KrigR package:

- Covariates (USGS GMTED 2010 DEM):
 - Donwload and pre-processing function
- Kriging (automap wrapper):
 - Parallel processing of multilayer rasters
 - Added sanity checks before Kriging

Kriged Air Temperature (1st - 6th January 2014)

7

KrigR – Workflow I

8

KrigR – Workflow II

Kriged Air Temperature (1st - 6th January 2014)

277.3

279.0

280.8

275.5

272.1

273.8

KrigR - CONSIDERATIONS FOR USERS

Consider your covariates

- <u>Consistency</u>: Relationship of target variable & covariates across spatial/temporal scales
- <u>Colinearity</u>: Exploit relationships between climate variables for Co-Kriging
 → Not all climate variables can be downscaled the same way

Computational cost

- Processing time scales close to exponentially with extent and downscaling factor
- Adding covariates only marginally increases computational cost

 \rightarrow Downscale small regional products using many covariates.

Global Kriging

- Important relationships break down between the hemispheres
- Computational cost prohibits us from doing this in one step

 \rightarrow We can Krig global products in latitude bands or smaller tiles

10

OUTLOOK

11

What did we gain?

- R-integrated access to state-of-the art climate products
- Complete workflow for advanced statistical downscaling of spatial products within R

How can you get it?

- It's on github and ready to use (you'll also find this presentation there)
- Get in touch with us for workshops

What's still to come?

- KrigR for use in species distribution modelling \rightarrow Publication
- Application of KrigR in vegetation dynamics studies \rightarrow Publication & Poster at ISEC

CLIMATE VARIABLES & COVARIATES

- Surface air temperature (SAT)
 - \rightarrow DEM relationship is very consistent
- Soil temperature
 - \rightarrow SAT & soil type & soil moisture drive this
- Precipitation
 - \rightarrow processes are highly spatially sensitive. Downscaling is not advised.
- Soil moisture
 - \rightarrow driven by precipitation & modified by soil and slope properties
- Wind
 - ightarrow highly spatially sensitive. DEM and slope steepness can be exploited

